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THE USE OF CASE'S METHOD TO SOLVE THE LINEARIZED BGK EQUATIONS 

FOR THE TEMPERATURE-JUMP PROBLEM* 

A.V. LATYSHEV 

The temperature-jump problem in a rarefied gas occupying a half-space 
with given temperature gradient at infinity is considered. Case's 
method is used to find the eigenvectors and eigenvalues of the 
appropriate transport operators. A completeness theorem for the family 
of eigenvectors is proved by solving the vector Riemann-Hilbert problem 
with matrix coefficients. The matrix that puts the boundary-value 
problem coefficient into diagonal form is analytic in the complex plane 
with two cuts joining two pairs of branch pints. This necessitates 
solving an additional boundary-value problem on the cuts, by means of 
which a fundamental matrix is constructed.' A solution of the problem is 
constructed using this matrix, and, as an application, an exact formula 
is obtained for calculating the temperature jump by quadratures. 

Case's method /I/ was first applied /2/ to kinetic theory, and an analytic solution of 
the temperature-jump problem for the Boltzmann BGK-equations was presented in /3/. However, 
the vectors in and iu in /3/ have different limiting values above and below the point Z, 
on the positive half-axis IR,. The solution in /3/ is therefore wrong. 

Based on the results of /3/ a canonical matrix was constructed /4/ for the 
Riemann-Hilbert boundary-value problem. An approximate but (according to its authors) 
"high-precision" numerical value for the magnitude of the temperature jump is given in /5/. 

A bibliography for this problem is given in /3-5/, and atheory of exact solutions of 
linearized vector kinetic equations of the form 

where C is a diagonal transport matrix, K (PL, p') is an (N x N) matrix and Y (z, p) is the 
unknown vector, is constructed in /6/. 

Suppose that a rarefied monatomic gas occupies the half-space x> 0, and that far from 
the x=0 plane a stationary temperature field 

T (5) = T, (1 + km) (x+ M) 

is maintained in the gas. 
Omitting minor details to be found in /3-5/, we reduce the temperature jump problem to 

the solution of a vector equation with boundary conditions 

exp (-- CL”) K (14 2 (J, II’) +’ 

Here 
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(where 'ET is the unknown temperature jump, T, is the temperature of the wall, and Z&p) 
is a column vector). 

If we seek a solution of (1) in the form 

2 (5, IL) = exp (--s/V) F (rl, P) 

we obtain, after lengthy algebra, which we omit, the characteristic equation 

(3) 

(4) 

(5) 

IB (rl) is a normalizing non-singular vector). 
From (4) we find the generalized eigenvectors of a continuous spectrum which fills the 

entire real line 

The symbol Ps-' denotes the Cauchy integral's principal value distribution, 6 (x) is 
the Dirac delta function, and o(q) is a scalar function determined by the normalizing con- 
ditions (5). 

Substituting (6) into the first relation in (5), we obtain the equation 

LA (7)) - exp t-V) o (9) A h)l B h) = 0 (7) 

R(z) = J&Z f zt;(z) A(z), t(z) = 5 w dx 

where A (2) is the dispersion matrix and I is the second-order unit matrix. 
Eq.(7) shows that the determinant of the matrix expression in square brackets in (7) is 

equal to zero, which gives a quadratic equation for o(q) with two solutions a1 (rl) and w (11). 
Thus formula (6) contains two eigenvectors, which with the help of (7) can be written in the 
form 

where Ba (q) is a normalizing vector given by the first formula in (5) with the vector F,(q, FL) 
substituted into the right-hand side. 

We now introduce the dispersion function h(z) = det A(z), using which one can verify 
that the discrete spectrum of the characteristic equation contains the double point qi = DC 
to which there correspond two solutions of (1): 

where a, and (I~ are aribitrary constants, and, in view of the second boundary condition (2), 
only the first vector in (10) participates in the expansion of the solution of (1) in eigen- 
vectors of the characteristic Eq.(4). 

Theorem 1. Eq.(l) with boundary conditions (2) has a unique solution which can be 
represented in the form of the expansion 

(111 

i.e. the scalar coefficients ET and aa(q)(a =1,2) of this expansion are uniquely defined. 
Theorem 1 shows that the eigenvectors (8) and (101 form a complete family or basis. 

Proof. In accordance with boundary conditions (2) we obtain from expansion (11) the 
integral equation 
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(‘2) 

To prove the theorem we shall demonstrate the existence and uniqueness of the expansion 
coefficients in (12), and at the same time explicitly compute the temperature jump coefficient 
ET. 

We substitute the eigenvectors (8) into expansion (12). We obtain a singular vector 
integral equation with Cauchy kernel 

where we have put 

m 

Y (p) = s * dnt exp@*)Q@) A (P) 
" 

and have introduced the new unknown vector 

(14) 

We introduce an auxiliary vector function 

analytic in the complex plane with a cut along R,. Using boundary values above and below [R, 
for the matrix (9) and the vector (15), we reduce Eq.(13) to a matrix Riemann-Hilbert boundary- 
value problem with matrix coefficients: 

Q+ (P) (2niN+ (p) - y (IL)) = Q- (II) (2niN- (cl) - Y(p)) (16) 

Both here and below PE iR+. 
We will construct a fundamental matrix function for this problem, i.e. a matrix X(z) 

that is analytic and non-degenerate in the plane c with cut L?, such that the coefficients 
of the problem are factorized on the edges of this cut: 

Q+(P) XC(P) = Q_(P) X- (P) (17) 

We will look for a fundamental matrix in the form of the product 

x (z) = s (z) U-1 (z) Smi (z), U (z) = diag {VI (z), Us (z)) (18) 

where U(z) is a new unknown diagonal matrix and S(z) is a matrix which reduces the matrix 

Q (z) to diagonal form. Direct calculation shows that such a matrix exists: 

s (z) = II z2 + ‘it + R (z) z2 + l/z - R (4 

-33y -33y I 

R (z) = 1/q, w (z) = z* - 32" + 2514 

We will consider the matrix S(z) to be a single-valued analytic matrix function in the 
plane with cut r = [-&al U [--a,ti], where fa and fd are zeros of the 2 polynomial w(a) 

with a = 1/s + i/l/% Computing the elements of the diagonal matrix 

D (a) = S-i (z) 52 (z) S (z) = diag {Or (z), 6 (z)) 
we obtain 

D, (z) = zt (z) + VP I/ii (1112 - 3 T R (z)) (a = 1, 2) 

where both here and below a=1 corresponds to the upper sign and a = 2 to the lower. 
The factorization problem (18) is now equivalent to a system of two matrix boundary-value 

problems, one of which is considered on the basic cut: 

D+(p) IV+ @)I-' = D- (IL) [U- (cL)]-~ (19) 



and the other on the additional cut: 

U+ (zJ T = TU- (T) (2. E r) 
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(ao) 

T = [S+ (?)]-I S- (T) = 

We will write problems (19) and (20) in the form of two systems of boundary-value problems: 

Let e,(p) be the principal value of the argument of the function 

Dar+(p) = Da (p) + nip exp (-ox) 
It is clear that 

where za is a zero of the function D,(z). 
In order to obtain the solution (U,, U,} of problems (21) and (22) considered on the 

basic and additional 
obtain the following 

cuts, we perform obvious transformations on problems (21) and (22) to 
two boundary-value problems, defined only on the basic cut: 

In (U,U,)+ - In (U,U,)- = 2ia (p) (23) 

'In($)+ -&In (-$-)‘= 2i $-& 
R(P) 

a (5) = 8, (2) + 8, (x) - 2~ 

b (4 = 4 (4 - 4 (4 

The system of boundary-value problems (23) and (24) is solved by standard methods and 
its solution has the form 

u,(*) (z) = exp IA (z) f R (2) B @I (a = 1, 2) W3 

This solution's drawback is the presence of an essential singularity at infinity. In 
order to cancel the singularity we look for U,,,(a) in the form 

u, (z) = lJ,(*j (2) cp (z), u, (2) = u,(*) (z)/qJ (2) (26) 

where v(z) is a function analytic throughout r (with an essential singularity at infinity). 
Here the boundary condition (21) is automatically satisfied, and the boundary condition (22) 
will be satisfied if and only if 

qJ+ (%) = i/q- (z) 
We take q(z) in the form 

&)=B"P(--R(x)! n(p);;_z)) 

For all POE R+ this function rp(a) satisfies the conditions given above, so that the 
pair {U,, U,) will be a solution of problems (21) and (22). 

In order for the functions U,(z) (a = i,2) not to contain essential singularities, it 
is necessary and sufficient that 
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Problem 127) is a special case of the Jacobi inversion problem. 
We note that the function U,(z) has a second-order zero at the point r=O and a 

first-order pole at the point b. The function U,(z) has a first-order zero at pLo. We 

remark that the matrix X(z) is anrlytic at the zeros of the polynomial u) (z) 

0, ZE a=\ [R,. Thus the fundamental matrix X(z) has been constructed. 
and det X (z) + 

We return to problem (16), which with the help of (17) is transformed into a homogeneous 
vector boundary-value problem with matrix coefficients 

Ix+ (@-I (2niN+ (p) - Y (p)) = IX- (p)P (LniN- (p) - Y (p)) (24 

Taking into account the behaviour at infinity and at the point p,, of the vectors and 
matrices in (28), we obtain the general solution of this problem 

where ai and flr(i= --1,0,1) are constants. To make this solution well-behaved, i.e. to 
give this vector the same behaviour at infinity as the vector (151, and to ensure the absence 
of singularities at finite points, we equate the coefficients of 2 and z@ in the expansions 
of the column elements in (29) to zero, and require that N (z) should not have double poles 
at the points z = 0 and z= p,,. We thus obtain ai, pi, E,, and Ed, with 

a = --i/*Y m (110) + ro” + ii,l, B = --Yra (1 + (PC?-- 3/,)/z? (pg)) 

Because of the way the vector N(Z) was constructed, the coefficients aa (IL) are 
uniquely defined by Sokhotskii's formula N+(p)- N-(p) = yA (1-1). 

Thus Theorem 1 has been completely proved. It gives the solution of the integrodiffer- 
ential Eq.(l) in the form (ll), describing the temperature jump in a rarefied gas. Eq.(3) 
gives the required magnitude of the temperature jump. 

We will make some comments on the method of solution and the difficulties which had to 
be overcome to solve (II. The point is that methods of solving a vector boundary-value problem 
with matrix coefficients where the problem's matrix diagonalizing coefficient s (2) has 
branch points, have not yet been described in the textbooks. Furthermore, considerable 
analytic efforts are required here in order to obtain the solution of the matrix boundary-value 
problems (19) and (20), defined on the basic and two additional cuts. The solution of the 
basic and supplementary boundary-value problems contains an essential singularity at infinity 
which is removed using problem (271, which is a special case of the Jacobi inversion problem. 

The method presented here can be used to solve various boundary-value problems in kinetic 
theory, where the Boltzmann equation is used with BGK collision operators. 
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